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1 "Corner" points of a polyhedron

In this section, we provide three alternative characterizations of "corner" points of a polyhedron. These

assume a special role in linear programming, since, informally speaking, we can say that an optimal solution

of a linear program "tends" to correspond to one of such points.

The �rst characterization of "corner" point, refers to the fact that these points cannot be expressed as a

convex combination of other two points of the polyhedron,

De�nition (extreme point): let P ⊆ Rn be a polyhedron. A vector x ∈ P is an extreme point of P if

there are no two vectors y, z ∈ P : y 6= x, z 6= x and a scalar λ : 0 ≤ λ ≤ 1 such that:

x = λy + (1− λ)z .

The second characterization refers to the "corner" point as to the unique optimal solution of a linear program

having P as feasible set.

De�nition (vertex): Let P be a polyhedron. A vector x ∈ P is a vertex of P if there exists some vector

c ∈ Rn: c′x < c′y for every y ∈ P : y 6= x.

The third characterization refers to the "corner" point in terms of a set of linear constraints and is introduced

since it is particularly useful from an algorithmic point of view.

As �rst step, we introduce a polyhedron P ⊆ Rn de�ned by the following systems of linear equality and

inequality constraints:

a′ix ≥ bi i ∈ I1
a′ix ≤ bi i ∈ I2
a′ix = bi i ∈ I3

We say that a constraint i belonging to the previous system is active in x̄ if a′ix̄ = bi.
Given these premises, the following result holds:

Theorem: Let x̄ ∈ Rn and let IACT = {i ∈ I : a′ix̄ = bi} be the set of indices of constraints that are active
in x̄. The following statements are equivalent:

1. there exist n vectors in the set {ai : i ∈ IACT } that are linearly independent;

2. the span of the vectors in the set {ai : i ∈ IACT } is Rn;

3. the system of equations a′ix̄ = bi with i ∈ IACT has a unique solution.

After having introduced such result, we can proceed to give the third characterization of corner point

as a point of the polyhedron where there are n active constraints corresponding with linearly independent

vectors ai.

De�nition (basic feasible solution): let P be a polyhedron.

A vector x̄ ∈ Rn is a basic solution if: a) all equality constraints are active; b) among the vectors ai associated
with constraints active in x̄, there are n vectors that are linearly independent.

A vector x̄ ∈ Rn that is a basic solution and that additionally satis�es all the constraints de�ning P is a

basic feasible solution.

Theorem: Let P be a non-empty polyhedron and x̄ ∈ P . The following statements are equivalent:

1. x̄ is an extreme point;

2. x̄ is a vertex;

3. x̄ is a basic feasible solution.
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Proof. We prove the statement following the implication order 2 ⇒ 1, 1 ⇒ 3, 3 ⇒ 2. Note that without

loss of generality we assume that P is de�ned only by constraints of the type a′ix ≥ bi and a′ix = bi.

vertex ⇒ extreme point

Suppose that x̄ is a vertex and consider any two points y, z ∈ P : y 6= x̄ and z 6= x̄. Consider additionally a

scalar 0 ≤ λ ≤ 1.
By de�nition of vertex, there exists c ∈ Rn : c′x̄ ≤ c′y and c′x̄ ≤ c′z. This implies that c′x̄ ≤ c′(λy+(1−λ)z)
and then that x̄ 6= λy+ (1− λ)z, thus showing that x̄ cannot be expressed as a convex combination of other

points of P and is thus an extreme point.

extreme point ⇒ basic feasible solution

We prove this by contradiction, assuming that an extreme point x̄ is not a basic feasible solution.

Let IACT = {i ∈ I : a′ix̄ = bi}. Since x̄ is not a basic feasible solution, there are no n linearly independent

vectors in {ai : IACT }. As a consequence, the vectors ai with i ∈ IACT lie in a proper subspace of Rn and

there exists a non-zero vector d ∈ Rn such that a′id = 0, for all i ∈ IACT .

Let ε > 0 be a small number and consider the vectors y = x̄ + εd and z = x̄ − εd. It can be noted that

a′iy = a′iz = a′ix̄ for i ∈ IACT . Moreover, for i 6∈ IACT , it holds a′ix̄ > bi and, for su�ciently small ε, it also
holds a′iy > bi (ε must be such that ε|a′id| < a′ix̄− bi). Therefore y ∈ P and, through similar arguments, we

can prove that z ∈ P . By �nally noticing that:

x̄ =
y + z

2

we obtain the contradiction that x̄ can be expressed as a convex combination of y and z thus contradicting

the fact that x̄ is an extreme point.

basic feasible solution ⇒ vertex

Let x̄ be a basic feasible solution and IACT = {i ∈ I : a′ix̄ = bi} be the set of indices of active constraints in
x̄.
If we de�ne the cost vector c =

∑
i∈IACT ai, we have:

c′x̄ =
∑

i∈IACT

aix̄ =
∑

i∈IACT

bi

and for every x ∈ P and i, it holds a′ix ≥ bi and

c′x =
∑

i∈IACT

aix ≥
∑

i∈IACT

bi

The two chains of (in)equalities show that x̄ is an optimal solution for the problem of minimizing c′x
over P . Additionally, in the second chain, the equality holds if and only if a′ix = bi for every I

ACT .

Since x̄ is a basic feasible solution, there are n linearly independent constraints that are active in x̄ and x̄ is

the unique solution to the system of equations de�ned by a′ix = bi with I
ACT , on the basis of the previous

theorem. It follows that x̄ is the unique optimal solution of c′x over P and, by de�nition, x̄ is a vertex.
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