Lecture Notes for the course
 "Design and Operation of Traffic and Telecommunication Networks"

(Version 0.1, January 5th 2016)

Bachelor of Science in Mathematics Freie Universität Berlin

 byFabio D'Andreagiovanni
Department of Mathematical Optimization, Zuse Institute Berlin (ZIB)
d.andreagiovanni@zib.de

1 "Corner" points of a polyhedron

In this section, we provide three alternative characterizations of "corner" points of a polyhedron. These assume a special role in linear programming, since, informally speaking, we can say that an optimal solution of a linear program "tends" to correspond to one of such points.

The first characterization of "corner" point, refers to the fact that these points cannot be expressed as a convex combination of other two points of the polyhedron,
Definition (extreme point): let $P \subseteq \mathbb{R}^{n}$ be a polyhedron. A vector $x \in P$ is an extreme point of P if there are no two vectors $y, z \in P: y \neq x, z \neq x$ and a scalar $\lambda: 0 \leq \lambda \leq 1$ such that:

$$
x=\lambda y+(1-\lambda) z .
$$

The second characterization refers to the "corner" point as to the unique optimal solution of a linear program having P as feasible set.
Definition (vertex): Let P be a polyhedron. A vector $x \in P$ is a vertex of P if there exists some vector $c \in \mathbb{R}^{n}: c^{\prime} x<c^{\prime} y$ for every $y \in P: y \neq x$.

The third characterization refers to the "corner" point in terms of a set of linear constraints and is introduced since it is particularly useful from an algorithmic point of view.
As first step, we introduce a polyhedron $P \subseteq \mathbb{R}^{n}$ defined by the following systems of linear equality and inequality constraints:

$$
\begin{array}{rl}
a_{i}^{\prime} x \geq b_{i} & i \in I_{1} \\
a_{i}^{\prime} x \leq b_{i} & i \in I_{2} \\
a_{i}^{\prime} x=b_{i} & i \in I_{3}
\end{array}
$$

We say that a constraint i belonging to the previous system is active in \bar{x} if $a_{i}^{\prime} \bar{x}=b_{i}$.
Given these premises, the following result holds:
Theorem: Let $\bar{x} \in \mathbb{R}^{n}$ and let $I^{A C T}=\left\{i \in I: a_{i}^{\prime} \bar{x}=b_{i}\right\}$ be the set of indices of constraints that are active in \bar{x}. The following statements are equivalent:

1. there exist n vectors in the set $\left\{a_{i}: i \in I^{A C T}\right\}$ that are linearly independent;
2. the span of the vectors in the set $\left\{a_{i}: i \in I^{A C T}\right\}$ is \mathbb{R}^{n};
3. the system of equations $a_{i}^{\prime} \bar{x}=b_{i}$ with $i \in I^{A C T}$ has a unique solution.

After having introduced such result, we can proceed to give the third characterization of corner point as a point of the polyhedron where there are n active constraints corresponding with linearly independent vectors a_{i}.

Definition (basic feasible solution): let P be a polyhedron.
A vector $\bar{x} \in \mathbb{R}^{n}$ is a basic solution if: a) all equality constraints are active; b) among the vectors a_{i} associated with constraints active in \bar{x}, there are n vectors that are linearly independent.
A vector $\bar{x} \in \mathbb{R}^{n}$ that is a basic solution and that additionally satisfies all the constraints defining P is a basic feasible solution.

Theorem: Let P be a non-empty polyhedron and $\bar{x} \in P$. The following statements are equivalent:

1. \bar{x} is an extreme point;
2. \bar{x} is a vertex;
3. \bar{x} is a basic feasible solution.

Proof. We prove the statement following the implication order $2 \Rightarrow 1,1 \Rightarrow 3,3 \Rightarrow 2$. Note that without loss of generality we assume that P is defined only by constraints of the type $a_{i}^{\prime} x \geq b_{i}$ and $a_{i}^{\prime} x=b_{i}$.

vertex \Rightarrow extreme point

Suppose that \bar{x} is a vertex and consider any two points $y, z \in P: y \neq \bar{x}$ and $z \neq \bar{x}$. Consider additionally a scalar $0 \leq \lambda \leq 1$.
By definition of vertex, there exists $c \in \mathbb{R}^{n}: c^{\prime} \bar{x} \leq c^{\prime} y$ and $c^{\prime} \bar{x} \leq c^{\prime} z$. This implies that $c^{\prime} \bar{x} \leq c^{\prime}(\lambda y+(1-\lambda) z)$ and then that $\bar{x} \neq \lambda y+(1-\lambda) z$, thus showing that \bar{x} cannot be expressed as a convex combination of other points of P and is thus an extreme point.

extreme point \Rightarrow basic feasible solution

We prove this by contradiction, assuming that an extreme point \bar{x} is not a basic feasible solution.
Let $I^{A C T}=\left\{i \in I: a_{i}^{\prime} \bar{x}=b_{i}\right\}$. Since \bar{x} is not a basic feasible solution, there are no n linearly independent vectors in $\left\{a_{i}: I^{A C T}\right\}$. As a consequence, the vectors a_{i} with $i \in I^{A C T}$ lie in a proper subspace of \mathbb{R}^{n} and there exists a non-zero vector $d \in \mathbb{R}^{n}$ such that $a_{i}^{\prime} d=0$, for all $i \in I^{A C T}$.
Let $\epsilon>0$ be a small number and consider the vectors $y=\bar{x}+\epsilon d$ and $z=\bar{x}-\epsilon d$. It can be noted that $a_{i}^{\prime} y=a_{i}^{\prime} z=a_{i}^{\prime} \bar{x}$ for $i \in I^{A C T}$. Moreover, for $i \notin I^{A C T}$, it holds $a_{i}^{\prime} \bar{x}>b_{i}$ and, for sufficiently small ϵ, it also holds $a_{i}^{\prime} y>b_{i}\left(\epsilon\right.$ must be such that $\epsilon\left|a_{i}^{\prime} d\right|<a_{i}^{\prime} \bar{x}-b_{i}$). Therefore $y \in P$ and, through similar arguments, we can prove that $z \in P$. By finally noticing that:

$$
\bar{x}=\frac{y+z}{2}
$$

we obtain the contradiction that \bar{x} can be expressed as a convex combination of y and z thus contradicting the fact that \bar{x} is an extreme point.

basic feasible solution \Rightarrow vertex

Let \bar{x} be a basic feasible solution and $I^{A C T}=\left\{i \in I: a_{i}^{\prime} \bar{x}=b_{i}\right\}$ be the set of indices of active constraints in \bar{x}.
If we define the cost vector $c=\sum_{i \in I^{A C T}} a_{i}$, we have:

$$
c^{\prime} \bar{x}=\sum_{i \in I^{A C T}} a_{i} \bar{x}=\sum_{i \in I^{A C T}} b_{i}
$$

and for every $x \in P$ and i, it holds $a_{i}^{\prime} x \geq b_{i}$ and

$$
c^{\prime} x=\sum_{i \in I^{A C T}} a_{i} x \geq \sum_{i \in I^{A C T}} b_{i}
$$

The two chains of (in)equalities show that \bar{x} is an optimal solution for the problem of minimizing $c^{\prime} x$ over P. Additionally, in the second chain, the equality holds if and only if $a_{i}^{\prime} x=b_{i}$ for every $I^{A C T}$.
Since \bar{x} is a basic feasible solution, there are n linearly independent constraints that are active in \bar{x} and \bar{x} is the unique solution to the system of equations defined by $a_{i}^{\prime} x=b_{i}$ with $I^{A C T}$, on the basis of the previous theorem. It follows that \bar{x} is the unique optimal solution of $c^{\prime} x$ over P and, by definition, \bar{x} is a vertex.

